

Solar System and beyond

#### **PLANETARY CUBESATS**

Discovering our Solar System and beyond with powerful CubeSat missions

### **Navigation Overview**

## Strategic and Technical Aspects of Planetary Small Satellite Missions

David Folta, Cheryl Gramling
Navigation and Mission Design Branch
NASA Goddard Space Flight Center

3<sup>rd</sup> Planetary CubeSat Science Symposium August 16-17, 2018







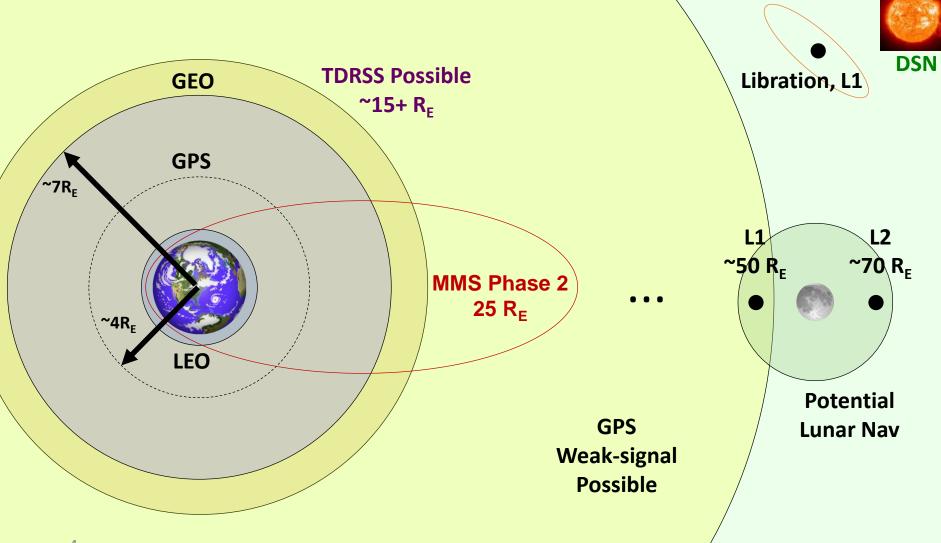
- Orbit Regimes
- Basic Navigation Concepts
- Data Systems and Types
- Influences on Measurements
- Planetary Navigation Options
- Future Directions



### Defining Navigation Regimes



- Near Earth central body is Earth or within 2e<sup>6</sup> km of Earth
- Planetary Moon, Planets and their moons, Asteroid
- Heliocentric Non-Planetary designs, Drift away


#### Navigation refers to:

- Knowledge of the mission orbit wrt the central body (absolute) or wrt another object (relative)
- Knowledge of where the object resided or currently resides in the orbit (definitive) or will reside in the future (predictive)
- The trajectory design associated with achieving the mission
- How to modify the object's orbit to follow that trajectory,
- And the time associated with each of these



## Notional Summary Near-Earth Operational Regimes







### Forms of Direct Measurements.



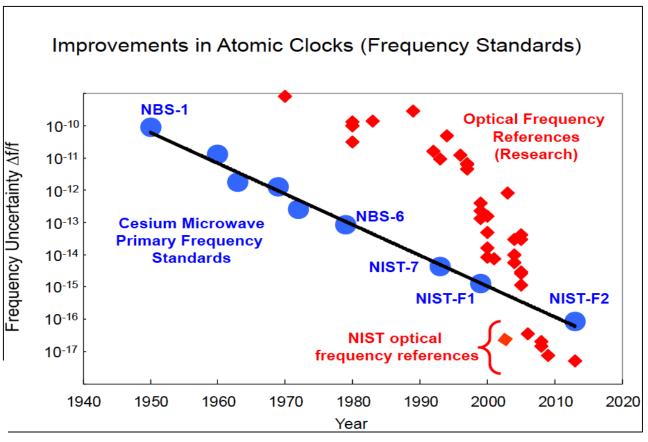
Time Delay

→ Range (Distance)

Differential Delay

- → Angle
- Frequency shift (Doppler)
  - or Carrier Phase

- → Line of Sight Velocity
- Frequency Change Rate → Line of Sight / Acceleration
- One common element among each of these...






## Multi-space affirme is Fundamental













- Ground element timing establishes boundary condition for enduser performance
- Applicable to communications, radiometrics, and science
- Sources clock and frequency
  - Delay accountability
  - Phase noise & jitter
  - Coherency
- Automatic exchange of timing state during a communication session enables:
  - TDMA type communication schemes Time-division multiple access
    (TDMA) is a <u>channel access method</u> for shared-medium networks. It
    allows several users to share the same <u>frequency channel</u> by dividing the
    signal into different time slots
  - Autonomous or on-demand session establishment
  - Internet-like routing







| Measurement Type                         | Providing Systems                 |
|------------------------------------------|-----------------------------------|
| Range – tone, swept tone                 | GN, TDRS TTC, DSN                 |
| Range – PN                               | TDRSS, GPS, DSN (variation)       |
| Doppler or Carrier Phase                 | All                               |
| Angles – Direct Observation              | GN, TDRS (WSC SGL, SA & MA beams) |
| Celestial Navigation – Indirect Angles   | Star Sensors, Earth/Sun Sensors   |
| Delta Differenced One-Way Range - Angles | DSN with Quasars                  |
| Imaging/Optical Navigation               | Cameras                           |
| XNAV                                     | X-Ray Pulsars                     |

Range & Doppler can be either 1-way or 2-way
Both improved by differencing



### Error Sources on Radiometrics



- Media phase delay
- Oscillator stability ground, relay, customer\*
  - Local Oscillators and the respective Phase Lock Loop
  - Includes resolution of Numerically Controlled Oscillators (NCO)
- Thermal Noise
- Loop Order ability to track higher order dynamics
- Signal to Noise Ratio & integration time
- Calibration
- Tone selection resolution limitations
- Coherency precision of turnaround
- Platform calibration location, orientation

<sup>\* -</sup> Does not apply to coherent operations; Can be differenced out with adequate source availability



## Multi-spaced Planetary Navigation



- Planetary Navigation options include traditional ground based and Onboard Celestial Navigation
- Traditional option includes the use of the NEN and DSN and a DSN compatible transponder, e.g. IRIS-V2, and requires multiple station contacts
- Onboard options include the use of Celestial Navigation, a self contained onboard system, developed for libration, cis-lunar, and deep space missions
  - Equipment quality depends on the mission and orbit regime & requirements
    - Transponder with ability to accept external reference and to output low phase noise Doppler (<<1mHz, like 0.3mHz)
    - Oscillator with Allan Variance <1e-12 (prefer 1e-13) over tau of 10-100 seconds
    - Accelerometer
    - **Star sensor** broad FOV allows for the largest variety of observations with adequate dynamics to meet the solution requirements
    - Onboard timing synchronous across all systems related to nav (XPDR, XLINK, C&DH, Nav processor, accelerometer, star sensor observables)
    - Processor
    - **Xlink for Formation** –incorporate relative Doppler and pseudo range, referenced to the same oscillator as the XPDR; the ambiguity has to be tunable or allow for the far field distances, but while maintaining near field accuracy.
- Improved accuracy and convergence using onboard system, especially for frequent maneuvers for formation control and any momentum uploads
- Requirements, math specs, & Users' Guide that contain the specs for CelNav are available



## Autonomous Celestial Navigation



#### Technology Demonstration Concept:

 Autonomous, on-board celestial navigation system fused with one-way radiometrics, accelerometers, Goddard Enhanced On-board Navigation System (GEONS), and Goddard Image Analysis and Navigation Tool (GIANT). Would provide autonomous Gateway navigation.



#### Relevance:

- Made up of existing high-TRL components with flight heritage (MMS, OSIRIS-Rex) and flight-proven software. Multi-center collaboration
- Answers specific need for WFIRST flagship mission, common hardware proposed for Caesar and Lucy

# WFIRST CelNav\* 2 ×10<sup>4</sup> Pos Err 1 + Cov 1 + Cov 2 5 30 35 40 45 Elapsed Time (days) 2 × 10<sup>4</sup> Vet Err 1 + Cov

On-board OD (CelNav + 1-way Doppler) for WFIRST

5 – 30 km, **15 - 50 mm/s**, 3-sigma RSS

Ground OD (NEN) based on recent experiences (multiple)
0.2 – 1 km, 200 – 500 mm/s, 3-sigma RSS

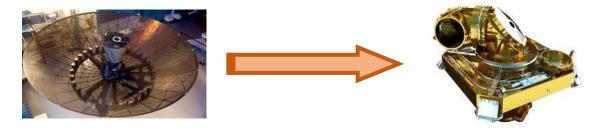
Performance is orbit/mission dependent Gateway-specific analysis pending

#### Relation to Current Activities:

- Testing of an autonomous celestial navigation system would directly support technology maturity for the WFIRST on-board navigation system.
  - Gateway & WFIRST on-board OD is more accurate for maneuver planning than ground based navigation alone and will save fuel, extending mission lifetime
  - Reduces DSN/NEN contact times for ranging
  - Aides relative navigation for potential WFIRST/Starshade mission

#### Onboard Requirements:

- Mass & power allocations,) select celestial body ephemerides, camera FOVs to view select celestial bodies, access to ACS
- 11 data, access to onboard radiometrics useful






### Incorporate Optimetrics



- Radiometrics: A measure of the change in a parameter associated with a radio frequency-based signal that can be used as an observable of direction, range, or relative velocity between two objects.
- As NASA moves toward optical communications, the navigation systems will adapt and can benefit.



- Optimetrics: Same as radiometrics, but using an optical signal as the source to provide orders of magnitude increased accuracy on the observables.
- Range to ~10um and range rate to ~20um/s at 622 MBPS data link rate, achieved through communication data clock phase measurements. Continuous optical carrier phase measurements advanced the Doppler accuracy to 60nm/s.
- Provide immunity from ionosphere and interplanetary plasma noise floor, and plasma scintillation which is a performance limitation for RF tracking. The techniques enable the precision required for gravity-wave and interior composition science, helio-physics, and precision formation flying.







#### Technology/Capability

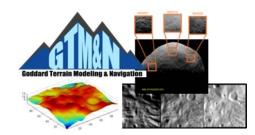
- Optical Navigation (OpNav) refers to a number of methods of extracting relative state information between a spacecraft and targets observed with a digital camera.
- Four components: unresolved center-finding (bearing), resolved center-finding (Multiple bodies), limb-based OpNav (relative info plus range), and surface feature navigation (SFN) (Bearing to know landmarks).
- All three components can either be performed on the ground or autonomously on-board.
- Currently capable of producing measurements with errors of less than 1 pixel and processing irregularly shaped bodies as exercised on OSIRIS-Rex.

#### Relevance/Importance

- Observables required for the precision relative navigation
- Required on many deep space and small body missions.
- OpNav decreases the reliance on ground-based radiometric tracking, decreasing cost and congestion on the space communication networks.

#### **Comparative Assessment**

- Goddard currently has access to state-of-the-art OpNav tools
  which provide access to state-of-the-art OpNav algorithms that
  meet or exceed the capabilities of other centers and companies:
  - Ground-based Goddard Image Analysis and Navigation Tool (GIANT) for unresolved/resolved center-finding, limb-based
  - Ground-based Stereophotoclinometry (SPC) software for TRN and surface modelling
  - Retina onboard TRN tool 8/15/18


#### Status/Plans

OpNav is applicable to almost all deep-space and small body missions, and even to non-traditional near-earth missions that seek to decrease cost and reliance on radiometric tracking. A sample of current/potential customers:

- OSIRIS-REx
- LUCY

New Frontiers 5

- CAESAR
- WFIRST
- Cubesat missions



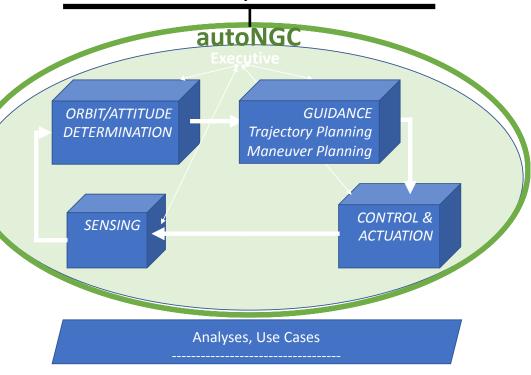


- GIANT is currently TRL 7 and will be TRL 9 by the end of FY 2019.
- Current efforts focus on migrating all ground-based OpNav capabilities to autonomous onboard capabilities as a critical part of the autoNGC suite.
- Fully autonomous onboard navigation represents the future of space exploration as ground based navigation becomes unfeasible due to time delays and cost.
- Miniaturizing and/or integrating components enables SmallSats and CubeSats

#### **Key Contacts**

- Andrew Liounis, GSFC/595 andrew.j.liounis@nasa.gov
- Kenneth Getzandanner, GSFC/595 kenneth.getzandanner@nasa.gov
- Benjamin Ashman, GSFC/595 benjamin.w.ashman@nasa.gov
- John van Eepoel GSFC/591 john.m.vaneepoel@nasa.gov




## Autonomous Navigation, Guidance, Control



- Follow-on to onboard orbit estimation is onboard orbit control: autonomous maneuver planning, execution, and calibration
- AutoNGC demonstrated on EO-1 in 2000; Established for single mission

Reduces ground ops required for maneuver planning and execution and associated risks

- Requires telemetry feed from the maneuver, similar to ground planning/execution/calibration process
- Algorithms for formation missions not yet implemented in FSW





## Simplified Measurement Capability



- Broad summary of measurement capability
  - Not intended to indicate one size fits all
  - Some measurements not available in real-time

Snowflake-like possible combinations for performance & robustness

|                  |                  |             |           | ΔDOR     | CELNAV/      | Requirement/  |
|------------------|------------------|-------------|-----------|----------|--------------|---------------|
| Orbit            | GPS              | TDRSS       | NEN/DSN   | (DSN)    | Optical      | Source        |
|                  | 50 cm @ 1        | 2-8 m @ 1.5 | 10-20 m @ |          |              |               |
| LEO              | Hz               | orbit       | 1.5 orbit | N/A      | 1 km @ 2 hr  | ≤ few m       |
| HEO (perigee     |                  |             |           |          | 0.1-15 km @  |               |
| < constellation) | 10 m @ 1 Hz      | 100 m       | 100 m     | N/A      | 1 orbit      | < 1 km / many |
|                  |                  |             | 100-200 m |          | 1-5 km @ 1   |               |
| GEO              | 5 m @ 1 Hz       | N/E         | @ 36 hrs  | N/A      | orbit        | 0.1 km / many |
|                  |                  |             | 200m @ 2  | 1 km @ 1 | 0.5 km @ 0.5 |               |
| Lunar, in view   | N/A <sup>a</sup> | N/E         | days      | day      | days         | 0.5 km / LRO  |
| Lunar, far       |                  |             |           |          | 0.5 km @ 0.5 |               |
| side/hi lat      | N/A              | N/A         | N/A       | N/A      | days         | 0.5 km / LRO  |
| Sun-Earth        |                  |             | 4-32 km @ | 1 km @ 1 | 5-15 km @ 3  |               |
| L1/L2            | N/A              | N/A         | 3 wks     | day      | days         | 8 km / WFIRST |
|                  |                  |             | 8-15 km @ | 1 km @ 1 | 5-10 km @ 3  |               |
| Planetary        | N/A              | N/A         | 3 wks     | day      | days         | ~ 5 km / Lucy |



## Generalized/Simplified Navigation Categories



- Broad summary of navigation categories
  - Not intended to indicate one size fits all
  - More snowflakes
    - Mission unique elements
    - Combination of many known components

| Category                    | Lower Accuracy                                 | Accurate                                                       | High Accuracy                                      | Precision Navigation                                  |
|-----------------------------|------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------|-------------------------------------------------------|
| Absolute Definitive         | 100 – 300 m                                    | 5 – 40 m                                                       | 50 cm – 10 m                                       | < 1mm – 50 cm                                         |
| Absolute Predictive (1 day) | 1 km                                           | 75 – 500 m                                                     | 5 – 50 m                                           | 5 cm – 5 m                                            |
| Relative Definitive         | 1 – 50 m                                       | 1 – 10 m                                                       | 0.1 – 1 m                                          | <0.1 mm – 1 m                                         |
| Relative Predictive (1 day) | <0.5 km                                        | 50 – 75 m                                                      | 1 – 10 m                                           | 0.1 mm – 10 cm                                        |
| Science Objective           | Astro, Spatial, Loose<br>temporal              | Temporal,<br>Surface<br>Observer,<br>Human                     | Temporal, Surface<br>Observer/Altimetry,<br>Human  | Altimetry, Gravity, Interior<br>Composition           |
| Orbit Regime                | Low, libration, helio cruise, cis-lunar cruise | Low, GEO,<br>High, loose<br>formation,<br>precise<br>maneuvers | Low, GEO, High,<br>approach, formation,<br>cluster | low, GEO, High, precise formation, rendezvous/docking |



### Planetary Navigation Summary



- Navigation in the near-earth regime, 2e<sup>6</sup> km, can be performed by a wide array of systems to provide robust solutions with seamless transitions between orbit regimes
- Navigation in the planetary regime has limited options with traditional ground support using radiometric tracking, onboard systems, and relative options available
- Many components within a communications system influence the resultant radio/optimetric tracking data quality
- GSFC Navigation offers relevant pre- and post-launch services to the user and networks communities
- Navigation needs to be an enabler for the science NASA hopes to achieve in the future – technology investments are key







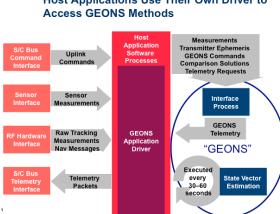
### **BACKUP**







- GPS Receiver
  - GSFC developed weak-signal GPS; licensed to companies (BRE)
  - Assists in coverage in higher altitudes
- Global Navigation Satellite System (GNSS)
  - Advancing to additional signals (L2c, L5), including other constellations (Galileo, Glonass, Compass)
- Crosslink
  - Developed as element integrated with weak-signal GPS receiver to TRL 5 for MMS
  - 1-way range measurement for relative navigation
  - Low-rate data on signal (exchange science alerts, H&S, nav)
- Autonomous Rendezvous and Docking Sensor
- XNav sensor; translates pulsar timing to pseudo-range observation
- Star Sensor
- Accelerometer
- Integrate navigation sensor with communications receiver








- Fusion of multiple data types from independent systems
  - Robust to outages or shortcomings of any one system
  - High accuracy
  - Seamless transitions across orbit regimes
- GEONS flight software processes forward Doppler from ground stations and TDRSS, attitude sensor data for celestial nav, GPS, crosslink & NGBS pseudorange, XNav

  Host Applications Use Their Own Driver to
  - Solves for absolute and relative navigation
  - Future data types: optimetric, optical imaging
  - Plans to upgrade to C++
- Test Facility: Formation Flying Test Bed
  - Provides Test As You Fly simulation capability
  - GPS simulator, Path Emulator for RF Signals, User Dynamics En
- From the spacecraft side, as comm subsystem is developed, nav and comm engineers need to work together to define requirements

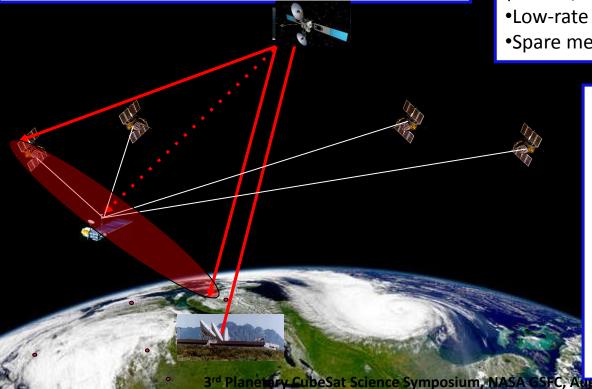




## Next Generation Broadcast Service (NGBS)



#### **NGBS Signal Consists of:**


- Low-rate data message (< 1 kbps)</li>
- PN ranging code synchronized with GPS time
- A wide "earth coverage" beam transmitted from three TDRS locations to provide global coverage to >1000 km altitude

#### **NGBS Message Includes:**

- •TDRS ephemeris and health/status information (FDF, WSC)
- •0.5 Hz GPS corrections (GDGPS)
- •5 sec GPS integrity alarms (GDGPS)
- Data authentication (GDGPS)
- Earth orientation (GDGPS)
- •Space environment/weather data (GDGPS/NASA GSFC CCMC)
- Low-rate fast-forward user commands (MOC)
- •Spare message bits for future content

### NGBS provides direct benefits in the following areas:

- Science/payload missions
- Human Space Flight missions
- SCaN/Network operations
- GPS and TDRSS onboard navigation users
- TDRSS performance
- New capabilities consistent with the modern GNSS architecture

